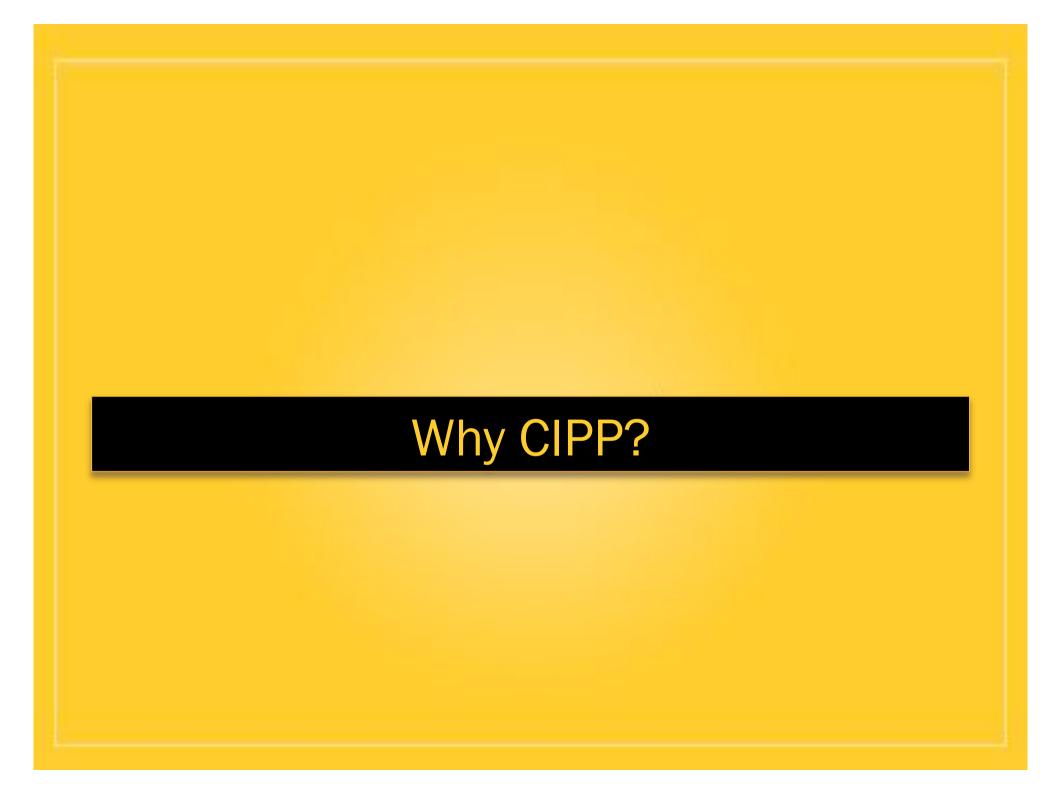
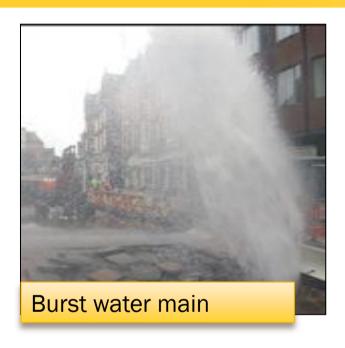
Cured in Place Pipe – Underground No-Dig pipeline rehabilitation for pressure pipe application – A fully structural approach

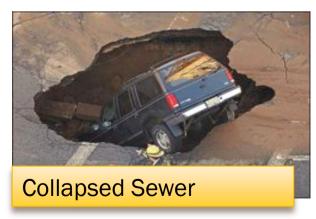


CONTENTS

- Why CIPP?
- Green Solutions
- How CIPP Works
- Other Trenchless Systems
- Assessment and CIPP Liner Design
- Application

THE BEGINNING


- Invention of Inversion system of CIPP Liner in the late 6os
 - leaking irrigation pipes in greenhouse
 - soon adaptation for sewer rehabilitation

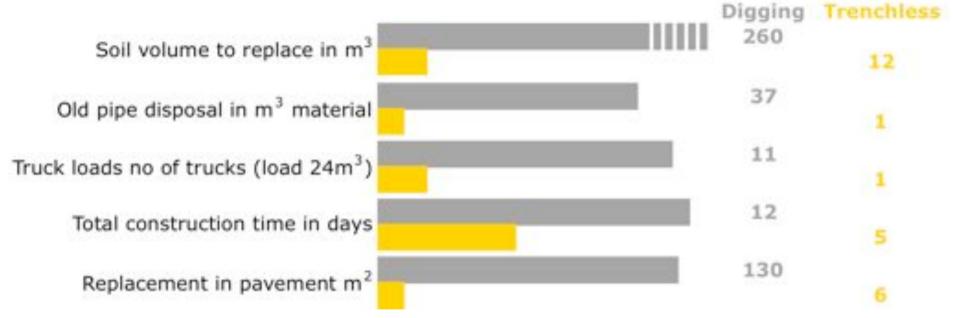


HE NEEDS HELP!

PREVENTING THIS!

WHY IS IT GROWING SO FAST NOW?

- Trenchless technology is an advanced method for the repair and renewal of underground pipelines
- Avoids digging and replacing of old and deteriorated sewer and water pipes
- No removal and disposal of soil and old pipes
- Reduction of CO2 foot print



GREEN SOLUTIONS

- No Styrene (as in Polyester)
- No solvents
- Non-toxic
- No excavation or limited at pressure pipe applications
- No landfill materials
- Long-lasting with 50 year design life
- Reduced greenhouse gas emissions

ENVIRONMENTAL IMPACT

Potable water pipe DN 300 - 130 m long, 2 m deep

Summary of emission reduction of all greenhouse gases emitted by construction equipment such as CO₂, CO, nitrogen oxides NO_x, and further emissions by total organic compounds TOC, and of sulfur oxides SO_x, smoke and other particles is very significant for each meter converted from digging to trenchless methods!

SUSTAINABLE SOLUTIONS

- Minimize traffic, trenching and disruption or damage to adjacent infrastructure and environment
- Extend the service life of infrastructure
- High performing, durable epoxy resins
- Technically proven processes
- Installer and environmentally safe, non-toxic materials
- Professional training and support of contractors performing installation consistently and reliably

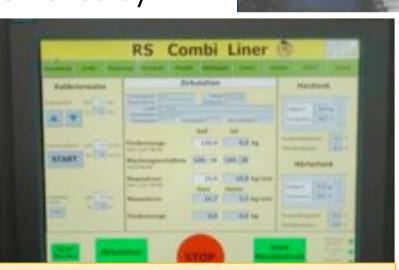
BENEFITS OF A FULLY MOBILE AND CONTAINED SOLUTION

- No off-site wet-out or refrigerated truck required. Total onsite system solution providing for optimum QA/QC totally visible to the Owner
- No Transport of impregnated Liner (dangerous goods!)
- Higher quality product with epoxy resins, safety! (No Peroxides!)
- Automation provides data logging for quality control, and simplifies installation
- Minimizing potential for error and maximizing opportunity for consistent results in delivering sustainable pipe rehabilitation solutions

How CIPP Works

WHEN CIPP IS NEEDED

- CIPP rehabilitates aging or damaged pipelines by constructing a new liner inside an existing host pipe
- Some of the many conditions that require CIPP rehabilitation include broken pipes, infiltration, and protruding connections



IMPREGNATION OF TUBE

The lining is laid out on an impregnation table or conveyor

A vacuum is applied to remove the air


Resin is pumped into the lining to replace the air removed by the vacuum

PLC controlling of the entire process important

WATER INVERSION AND CURE

- The resin-impregnated liner is inverted into the host pipe using water pressure
- Inversion water is then circulated and heated through a boiler, which in turn cures the resin/liner in place

AIR INVERSION & STEAM CURE

- The liner is installed using an air inversion unit and inverted into the host pipe using air pressure
- Once inversion is complete, steam is used to elevate the temperature of the air to cure the resin/liner
- During cure the resin transforms from a liquid state to a molecularly crosslinked solid with excellent static and corrosion resistance and durability

Other Trenchless Technologies

LONG PIPE RELINING, SWAGELINING ROLLDOWN

Technology

- The old pipe will be cleaned and calibrated
- Controll via TV-inspection
- Welding of the new pipes
- Pull in of the new pipe by a winder

Applications

- For almost all host materials
- DN 80 1000 mm

Pros

·Factory manufactured plastic pipe, Costs at the lower end

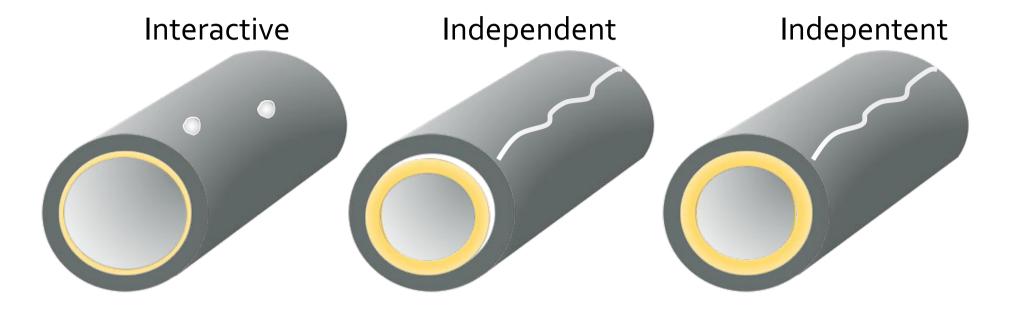
Cons

- Substantial reduction in cross sectional area of the new pipe
- Annulare gap between host pipe and new pipe at Sliplining
- Requires a big pit excavation
- Bends restrictions
- Requires exact calibration of the host pipe
- Large space requirements as entire length of the pipe has to be laid out on the ground

CLOSE-FIT TECHNOLOGY

- Technology
- Usage of a reforming pipe
 - reduction of diameter
 - high elasticity
- The Close Fit liner is moved into the old pipe through existing chamber or through a small trench
- Reforming of the Close Fit Liner with temperature (and pressure)
- The new pipe is pressed exactly on the inner wall of the old pipe and take on the function of the old pipe
- Applications
- Drinking water, gas, industrial, oil, and sewage pipes
- Diameter DN 100 400 mm
- Pros
- Little reduction in cross-sectional area (wall thickness of the pipe)
- Minimal digging
- No welding on site
- Cons
- Depends exactly on calibration of host pipe, not flexible in host pipe diameter
- Limited diameter range
- Bends restrictions
- Material comparatively expensive
- Sourcing in remote countries, coils are large in DN, difficult and expensive to transport
- Inflexible in diameter changes

Assessment and Liner Design


PRODUCT CATEGORIES AWWA M28

Classification according to AWWA M28 – Good tool to categorise existing technologies

	Non-structural	Semi-Structural		Fully Structural
	Internal Coating	Internal Lining	Lining with load bearing	Bears full loads
Liner Charatceristics according to AWWA	Class 1	Class 2	Class 3	Class 4
Internal corrosion protection	Yes	Yes	Yes	Yes
Hole and gap span at MAOP	No	Yes	Yes	Yes
Inherent ringstiffness	No	No	Yes	Yes
PN Lnier ≥ MAOP	No	No	No	Yes
Liner survives host pipe failure	No	No	No	Yes

The answer to a new pipeline

CLASSIFICATION AWWA 28

- Bonded Lining Class II
 Woven Textile hose with Epoxy resin
 Sometimes combined with a felt layer
- Loose fit structural
 Liner Class 3 and 4
 Sliplining with plastic
 pipes
 Gap between host
 pipe and new pipe
- Close fit structural
 Liner Class 3 and 4
 CIPP, Fold in Form,
 Rolldown, Swagelining
 No gap between host pipe and new pipe

CIRCULAR WOVEN LININGS

- •Circular Woven Textile hose, Polyester yarns, various coatings available
- Class II Lining
- •High tensile elongation at break > than tensile elongation of host pipe material
- •Material strength needed relatively low due to direct pressure transfer tensile Strength > 25 MPa
- •Only corrosion protection and limited gap span capabilities at hole corrosion and joints

No external load bearing capacities

pressure

Burst concrete pipe due to pressure transfer

pipe must be structurally sound

Host pipe material

Suitable
Steel in good
Condition

Not suitable Cast Iron

Concrete, PSCP,

PCCP

Asbestos cement

STRUCTURAL CIPP LININGS

3 types of Lining exist with variations thereof

Polyester Needle felt with meshed fibre glass content

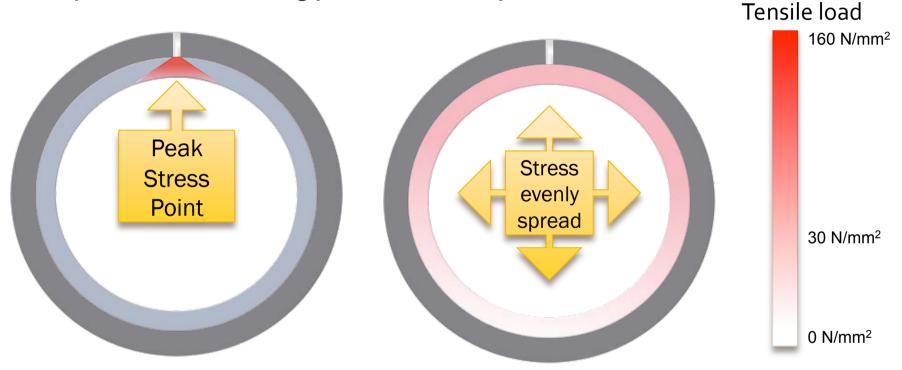
- Improved external load bearing capacity with limited improvement of internal pressure resistance
- Consistent layer
 construction, homogenous
 wall thickness
- Consistent results after installation
- Tensile Strength < 50 MPa</p>

Polyester needle felt with separate glass layer

- Improved external load bearing capacity
- Improved internal pressure resistance at smaller wallthickness
- Layer structure inconsistent in glass/felt content
- Larger DN/thickness lower properties
- •In-homogenous glass/felt bonding - loose overlap inconsistent results after installation
- Tensile Strength < 80 MPa</p>

Polyester needle felt with oriented glass structure

- High external and internal load bearing capacities
- Layer structure consistent in glass/felt content at all thicknesses
- Each DN and thickness delivers same properties
- Consistent results after installation
- Tensile Strength up to 170 MPa

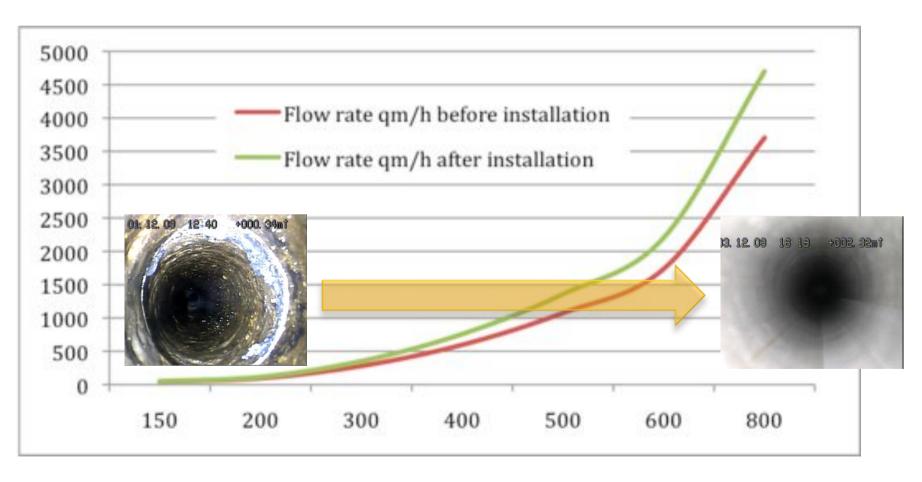

Class III yes – Class IV?

Class III Yes - Class IV?

Class III Yes - Class IV Yes

STRUCTURAL CIPP LININGS – BONDING OR NON-BONDING?

Example for a 7 bar working pressure Lined Pipe



The lesson learned:

Any Class III or IV CIPP Liner bonding onto the host pipe has limited capabilities for internal pressure resistance, and relies entirely on the structural integrity of the host pipe for its pressure resistance. A bonded Liner can never be a fully structural solution.

STRUCTURAL LININGS – IMPACT ON HYDRAULICS

- •Just to illustrate an example based on Hazen-Williams
- •Minor cross sectional loss is generally offset by the increased laminar flow due to smooth inner surface of the Liner

DESIGN ASTM 1216 - ASSESSMENT

<u>Assessment of conditions</u>

Pipe material and age

Conditions:

Incrustations, holes, corrosion, wall-thickness of pipe, joints, cracks...

Pipe-ovality, live load, hydrostatic pressure (ground-water)

Soil conditions: weight, finegrained, coarse-grained, crushed rock...

Internal working-pressure

LINER DESIGN – ASTM 1216 FULLY DETERIORATED

External resistance

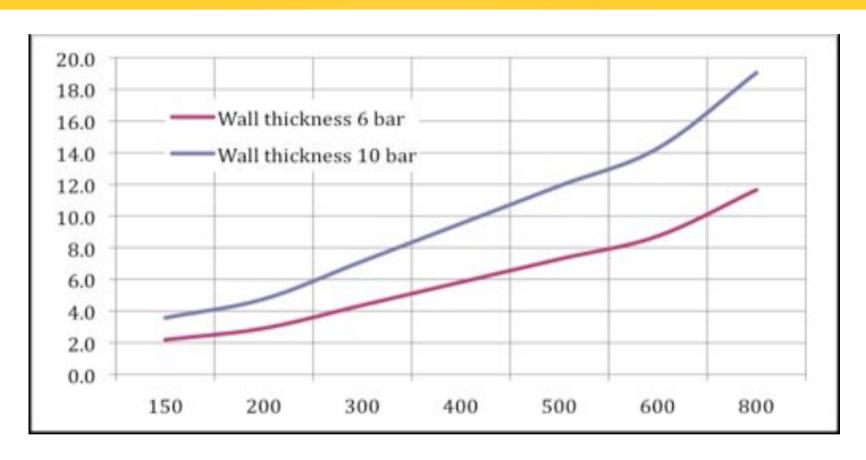
$$t = 0.721 \times D \left(\frac{\left(\frac{N \times q_T}{C} \right)^2}{R_W \times B' \times E_L \times E'_S} \right)^{\frac{1}{3}}$$

Full hydrostatic, soil and live load without considering the host pipe

External resistance

$$t = \frac{D}{\sqrt[3]{\frac{2KE_LC}{H_W(1-v^2)N} + 1}}$$

Full hydrostatic load on the Liner, soil and live load still carried by the host pipe


Internal resistance

$$t = \frac{D}{\frac{2\sigma_{TL}}{PN} + 2}$$

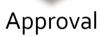
Full internal pressure on the Liner without any distribution of the host pipe - "Stand-alone"

Highest result of wall thickness to be considered

LINER DESIGN THICKNESS — EXAMPLE FOR A FULLY STRUCTURAL SOLUTION

Design values*: E-Modulus 6441 MPa, Flexural Strength 165 MPa, Tensile Strength 105 MPa

*RS BlueLine® Technology RS WFS Pull In



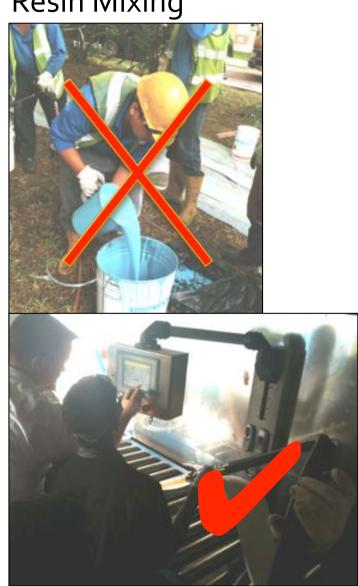
Application

CONTROL THE PROCESS

Source of material manufacturing

Testing and quality control

Installation equipment and Know-how

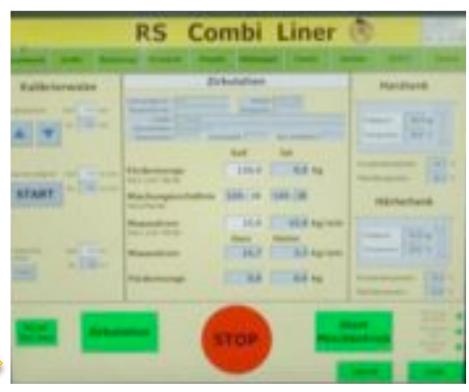

Process and quality control on the jobsite

Watch the circle! Material Equipment Installation

One source for all key for success!

APPLICATION KNOW-HOW = PROCESS CONTROL

Resin Mixing



Impregnation

APPLICATION KNOW-HOW = PROCESS CONTROL

- Documentation of all relevant impregnation and installation parameter
- Quality control as per DIBT (Germany Institute for Construction) or equivalent certification
- Accredited laboratory
 with expertise in CIPP
 trenchless technologies
 for testing, quality control
 and evaluation
- If locally not available seek partnership with an experienced engineering company

THANKYOU - SHUKRAN

RS Technik (D)

